A(x)=7(x^2+14x)-56

Simple and best practice solution for A(x)=7(x^2+14x)-56 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A(x)=7(x^2+14x)-56 equation:



(A)=7(A^2+14A)-56
We move all terms to the left:
(A)-(7(A^2+14A)-56)=0
We calculate terms in parentheses: -(7(A^2+14A)-56), so:
7(A^2+14A)-56
We multiply parentheses
7A^2+98A-56
Back to the equation:
-(7A^2+98A-56)
We get rid of parentheses
-7A^2+A-98A+56=0
We add all the numbers together, and all the variables
-7A^2-97A+56=0
a = -7; b = -97; c = +56;
Δ = b2-4ac
Δ = -972-4·(-7)·56
Δ = 10977
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-97)-\sqrt{10977}}{2*-7}=\frac{97-\sqrt{10977}}{-14} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-97)+\sqrt{10977}}{2*-7}=\frac{97+\sqrt{10977}}{-14} $

See similar equations:

| -10.4v=-11.5v-10.34 | | 3(6x-9)+3=4(2x+3)+5x | | 2y+2.43=18.83 | | 2(3x-7)–4x=-2 | | -6.5q=-6.5q-8.75 | | 61+x=80 | | 2r+3.2=9.2 | | -1.9c+10=-1.9c+17.85 | | 4(2x-7)-6x=2x-28 | | 12.9y-15.02=9.7+12.9y+10.52 | | 5-2(x-1)=4(3-x)-2 | | 13.06-19.4f=-19.4f | | 1.4(x-1.5)-1.9x=1.5x-20.1 | | 19.2u-8.72-4u=-8.72+15.2u | | 2y+0.5y+4.5=2y-5 | | -5.9t=-5.2t+12.74 | | -20=-7u | | 3/4k+3=21 | | -3.21-5.9k+8.8k=-3.21+2.9k | | 3x+32=4x+15 | | 9.1s-12.28=-4.44+14.7s | | .35(x+60)-0.04(x-20)=3.2 | | 2+m=58/15 | | 4(7x=1)+6(-2x+5)=50 | | 3(2x-5)+8x=4 | | 9.15-12.28=-4.44+14.7s | | 32.8=b | | x+4/5=3/1 | | 1.4(x-1.5)-1.3x=1.3x-11.7 | | -7+18f=18f-7 | | 200000000+2000(x)=25000000+1000(x) | | -7+18f=185-7 |

Equations solver categories